Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Pathol ; 193(7): 977-994, 2023 07.
Article in English | MEDLINE | ID: mdl-37037285

ABSTRACT

Congenital toxoplasmosis constitutes a major cause of pre- and postnatal complications. Fetal infection with Toxoplasma gondii influences development and can lead to microcephaly, encephalitis, and neurologic abnormalities. Systematic studies concerning the effects of neural progenitor cell infection with T. gondii are unavailable. Cortical intermediate progenitor cells cultivated as neurospheres obtained from E16.5 Swiss Webster mice were infected with T. gondii (ME49 strain) tachyzoites to mimic the developing mouse cerebral cortex in vitro. Infection was associated with decreased cell proliferation, detected by Ki-67 staining at 48 and 72 hours after infection in floating neurospheres, and reduced cellularity at 96 hours. Transient decreases in the expression of the neurogenesis-related transcription factors T-box brain protein 1, mouse atonal homolog protein 1, and hairy and enhancer of split protein 1 were found in infected cultures, while the level of transcription factor SOX-2 remained unaltered. Neurogenic potential, assessed in plated neurospheres, was impaired in infected cultures, as indicated by decreased late neuronal marker neurofilament heavy chain immunoreactivity. Infected cultures exhibited decreased overall migration rates at 48 and 120 hours. These findings indicate that T. gondii infection of neural progenitor cells may lead to reduced neurogenesis due to an imbalance in cell proliferation alongside an altered migratory profile. If translated to the in vivo situation, these data could explain, in part, cortical malformations in congenitally infected individuals.


Subject(s)
Neural Stem Cells , Toxoplasma , Mice , Animals , Neurons , Neurogenesis , Cell Proliferation
2.
Biomedicines ; 11(2)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36831091

ABSTRACT

In mice, oral Toxoplasma gondii infection induces severe ileitis. The aim of the present study was to investigate the impact of the P2X7 receptor (P2X7) on the inflammatory response to T. gondii-induced ileitis. Cysts of the ME49 strain of T. gondii were used to induce ileitis. The infected mice were euthanized on day 8 and ileal tissue and peripheral blood were collected for histopathological and immunohistochemical analyses. Ileal contractility, inflammatory mediators, inflammasome activation, quantitative PCR analysis of gene expression, and fecal microbiota were assessed using appropriate techniques, respectively. The infected P2X7-/- mice had greater disease severity, parasitic burden, liver damage, and intestinal contractility than the infected wild-type (WT) mice. Infection increased serum IL-6 and IFN-γ and tissue caspase-1 but not NLRP3 in P2X7-/- mice compared to WT mice. Bacteroidaceae, Rikenellaceae, and Rhodospirillales increased while Muribaculaceae and Lactobacillaceae decreased in the infected WT and P2X7-/- mice. Bacteroidia and Tannerellaceae increased in the P2X7-/- mice with ileitis. By contrast, Clostridiales and Mollicutes were absent in the P2X7-/- mice but increased in the WT mice. P2X7 protects mice against T. gondii infection by activating the inflammasome and regulating the local and systemic immune responses. Specific gut bacterial populations modulated by P2X7 determine disease severity.

3.
Microvasc Res ; 131: 104024, 2020 09.
Article in English | MEDLINE | ID: mdl-32502488

ABSTRACT

Congenital toxoplasmosis is a parasitic disease that occurs due vertical transmission of the protozoan Toxoplasma gondii (T. gondii) during pregnancy. The parasite crosses the placental barrier and reaches the developing brain, infecting progenitor, glial, neuronal and vascular cell types. Although the role of Radial glia (RG) neural stem cells in the development of the brain vasculature has been recently investigated, the impact of T. gondii infection in these events is not yet understood. Herein, we studied the role of T. gondii infection on RG cell function and its interaction with endothelial cells. By infecting isolated RG cultures with T. gondii tachyzoites, we observed a cytotoxic effect with reduced numbers of RG populations together with decrease neuronal and oligodendrocyte progenitor populations. Conditioned medium (CM) from RG control cultures increased ZO-1 protein levels and organization on endothelial bEnd.3 cells membranes, which was impaired by CM from infected RG, accompanied by decreased trans-endothelial electrical resistance (TEER). ELISA assays revealed reduced levels of anti-inflammatory cytokine TGF-ß1 in CM from T. gondii-infected RG cells. Treatment with recombinant TGF-ß1 concomitantly with CM from infected RG cultures led to restoration of ZO-1 staining in bEnd.3 cells. Congenital infection in Swiss Webster mice led to abnormalities in the cortical microvasculature in comparison to uninfected embryos. Our results suggest that infection of RG cells by T. gondii negatively modulates cytokine secretion, which might contribute to endothelial loss of barrier properties, thus leading to impairment of neurovascular interaction establishment.


Subject(s)
Cell Differentiation , Cerebral Cortex/blood supply , Endothelial Cells/parasitology , Ependymoglial Cells/parasitology , Microvessels/parasitology , Neurovascular Coupling , Toxoplasma/pathogenicity , Toxoplasmosis, Cerebral/parasitology , Toxoplasmosis, Congenital/parasitology , Animals , Cell Line , Disease Models, Animal , Electric Impedance , Endothelial Cells/metabolism , Endothelial Cells/pathology , Ependymoglial Cells/metabolism , Ependymoglial Cells/pathology , Mice, Inbred C57BL , Microvessels/metabolism , Microvessels/pathology , Tight Junctions/metabolism , Tight Junctions/parasitology , Tight Junctions/pathology , Toxoplasmosis, Cerebral/metabolism , Toxoplasmosis, Cerebral/pathology , Toxoplasmosis, Congenital/metabolism , Toxoplasmosis, Congenital/pathology , Transforming Growth Factor beta1/metabolism , Zonula Occludens-1 Protein/metabolism
4.
Mem Inst Oswaldo Cruz ; 115: e190389, 2020.
Article in English | MEDLINE | ID: mdl-32074167

ABSTRACT

BACKGROUND: Chagas disease, which is caused by the protozoan Trypanosoma cruzi, is endemic to Latin America and mainly affects low-income populations. Chemotherapy is based on two nitrocompounds, but their reduced efficacy encourages the continuous search for alternative drugs. Our group has characterised the trypanocidal effect of naphthoquinones and their derivatives, with naphthoimidazoles derived from ß-lapachone (N1, N2 and N3) being the most active in vitro. OBJECTIVES: In the present work, the effects of N1, N2 and N3 on acutely infected mice were investigated. METHODS: in vivo activity of the compounds was assessed by parasitological, biochemical, histopathological, immunophenotypical, electrocardiographic (ECG) and behavioral analyses. FINDINGS: Naphthoimidazoles led to a decrease in parasitaemia (8 dpi) by reducing the number of bloodstream trypomastigotes by 25-50% but not by reducing mortality. N1 protected mice from heart injury (15 dpi) by decreasing inflammation. Bradycardia was also partially reversed after treatment with N1 and N2. Furthermore, the three compounds did not reverse hepatic and renal lesions or promote the improvement of other evaluated parameters. MAIN CONCLUSION: N1 showed moderate trypanocidal and promising immunomodulatory activities, and its use in combination with benznidazole and/or anti-arrhythmic drugs as well as the efficacy of its alternative formulations must be investigated in the near future.


Subject(s)
Chagas Disease/drug therapy , Naphthoquinones/therapeutic use , Nitroimidazoles/therapeutic use , Trypanocidal Agents/therapeutic use , Acute Disease , Animals , Anti-Inflammatory Agents , Disease Models, Animal , Electrocardiography , Male , Mice , Naphthoquinones/chemistry , Nitroimidazoles/chemistry , Parasitemia/drug therapy , Time Factors , Trypanocidal Agents/chemistry
5.
J Innate Immun ; 12(4): 321-332, 2020.
Article in English | MEDLINE | ID: mdl-31801138

ABSTRACT

Chagas disease affects millions of people mainly in Latin America and is a protozoan illness caused by the parasite Trypanosoma cruzi. Chagasic cardiomyopathy is the leading cause of mortality of infected patients, due to compromised electrical and mechanical cardiac function induced by tissue remodeling, especially fibrosis, and lymphocytic infiltration. Some cellular biochemical pathways can be protective to the heart, and we tested if the in vivo activation of the autophagic machinery by rapamycin could reduce parasite-induced myocarditis. Regarding the expression of LC3, an autophagy marker, we observed its upregulation in the cardiac tissue of infected untreated mice. However, after rapamycin treatment, an autophagy inducer, infected mice showed reduced electrical cardiac dysfunctions, myocarditis, cardiac damage, and reduced production of pro-inflammatory cytokines by the heart. On the other hand, the parasite's life cycle was not affected, and we observed no modulations in cardiac tissue or blood parasitemia. Our data indicate that, at least partially, autophagy induction controls inflammation in the heart¸ illustrating the complexity of the pathways that concur to the development of the infection.


Subject(s)
Chagas Disease/drug therapy , Myocarditis/drug therapy , Sirolimus/pharmacology , Trypanosoma cruzi/immunology , Acute Disease , Animals , Chagas Disease/immunology , Chagas Disease/pathology , Male , Mice , Microtubule-Associated Proteins/immunology , Myocarditis/immunology , Myocarditis/parasitology , Myocarditis/pathology
6.
Sci Rep ; 9(1): 6478, 2019 04 24.
Article in English | MEDLINE | ID: mdl-31019244

ABSTRACT

Glucagon has been shown to be beneficial as a treatment for bronchospasm in asthmatics. Here, we investigate if glucagon would prevent airway hyperreactivity (AHR), lung inflammation, and remodeling in a murine model of asthma. Glucagon (10 and 100 µg/Kg, i.n.) significantly prevented AHR and eosinophilia in BAL and peribronchiolar region induced by ovalbumin (OVA) challenge, while only the dose of 100 µg/Kg of glucagon inhibited subepithelial fibrosis and T lymphocytes accumulation in BAL and lung. The inhibitory action of glucagon occurred in parallel with reduction of OVA-induced generation of IL-4, IL-5, IL-13, TNF-α, eotaxin-1/CCL11, and eotaxin-2/CCL24 but not MDC/CCL22 and TARC/CCL17. The inhibitory effect of glucagon (100 µg/Kg, i.n.) on OVA-induced AHR and collagen deposition was reversed by pre-treatment with indomethacin (10 mg/Kg, i.p.). Glucagon increased intracellular cAMP levels and inhibits anti-CD3 plus anti-CD28-induced proliferation and production of IL-2, IL-4, IL-10, and TNF- α from TCD4+ cells in vitro. These findings suggest that glucagon reduces crucial features of asthma, including AHR, lung inflammation, and remodeling, in a mechanism probably associated with inhibition of eosinophils accumulation and TCD4+ cell proliferation and function. Glucagon should be further investigated as an option for asthma therapy.


Subject(s)
Airway Remodeling/drug effects , Bronchial Hyperreactivity/prevention & control , Glucagon/pharmacology , Ovalbumin/pharmacology , Pneumonia/prevention & control , Animals , Asthma/prevention & control , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/metabolism , Cell Proliferation/drug effects , Chemokine CCL24/metabolism , Cytokines/metabolism , Lung/drug effects , Lung/metabolism , Mice, Inbred Strains , Receptors, Glucagon/metabolism
7.
Am J Pathol ; 181(2): 593-604, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22733008

ABSTRACT

Duchenne muscular dystrophy (DMD), an X-linked recessive disorder affecting 1 in 3500 males, is caused by mutations in the dystrophin gene. DMD leads to degeneration of skeletal and cardiac muscles and to chronic inflammation. The mdx/mdx mouse has been widely used to study DMD; this model mimics most characteristics of the disease, including low numbers of T cells in damaged muscles. In this study, we aimed to assess migration of T cells to the heart and to identify any alterations in adhesion molecules that could possibly modulate this process. In 6-week-old mdx/mdx mice, blood leukocytes, including T cells, were CD62L(+), but by 12 weeks of age down-modulation was evident, with only approximately 40% of T cells retaining this molecule. Our in vitro and in vivo results point to a P2X7-dependent shedding of CD62L (with high levels in the serum), which in 12-week-old mdx/mdx mice reduces blood T cell competence to adhere to cardiac vessels in vitro and to reach cardiac tissue in vivo, even after Trypanosoma cruzi infection, a known inducer of lymphoid myocarditis. In mdx/mdx mice treated with Brilliant Blue G, a P2X7 blocker, these blood lymphocytes retained CD62L and were capable of migrating to the heart. These results provide new insights into the mechanisms of inflammatory infiltration and immune regulation in DMD.


Subject(s)
Cell Movement/immunology , Dystrophin/deficiency , Muscles/immunology , Muscles/pathology , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Animals , Blood Vessels/immunology , Blood Vessels/pathology , Cell Adhesion/immunology , Dystrophin/metabolism , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , L-Selectin/blood , Lymphocyte Activation , Lymphocyte Count , Male , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Motor Activity , Muscles/physiopathology , Muscular Dystrophy, Animal/immunology , Muscular Dystrophy, Animal/parasitology , Muscular Dystrophy, Animal/pathology , Muscular Dystrophy, Animal/physiopathology , Myocardium/immunology , Myocardium/pathology , Receptors, Purinergic P2X7/metabolism , Solubility , Trypanosoma cruzi/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...